A composite logistic regression approach for ordinal panel data regression
نویسندگان
چکیده
We propose in this article a Composite Logistic Regression (CLR) approach for ordinal panel data regression. The new method transforms the original ordinal regression problem into a number of binary ones. Thereafter, the method of conditional logistic regression (Chamberlain, 1984; Wooldridge, 2001; Hsiao, 2003) can be directly applied. As a result, the new method allows the unobserved subject effects to be correlated with the observed predictors in an arbitrary manner. Computationally, the new method is able to profile out unobserved subject effects in a very neat manner. This not only makes computational implementation very easy but also makes theoretical treatment straightforward. In particular, we show theoretically that the resulting estimator is -consistent n and asymptotically normal. Both simulations and a real example are reported to demonstrate the usefulness of the new method.
منابع مشابه
به کارگیری مدلهای رگرسیون لجستیک ترتیبی در مطالعات کیفیت زندگی
Background & Objectives: Due to the increasing tendency to measure the quality of life in recent years and the extensive quality of life questionnaires, it is important to determine the appropriate method of analyzing data derived from these studies. The aim of the present study was to introduce ordinal logistic regression models as an appropriate method for analyzing the data of quality of li...
متن کاملStereotype Ordinal Regression
There are a number of reasonable approaches to analysing an ordinal outcome variable. One common approach, known as the Proportional Odds (PO) Model, is implemented in Stata as ologit. If the assumptions of the PO model are not satisfied, an alternative is to treat the outcome as categorical, rather than ordinal, and use multinomial logistic regression (mlogit) in Stata. This insert describes a...
متن کاملMultilevel cumulative logistic regression model with random effects: Application to British social attitudes panel survey data
Amultilevelmodel for ordinal data in generalized linearmixedmodels (GLMM) framework is developed to account for the inherent dependencies among observationswithin clusters. Motivated by a data set from the British Social Attitudes Panel Survey (BSAPS), the random district effects and respondent effects are incorporated into the linear predictor to accommodate the nested clusterings. The fixed (...
متن کاملA NEW APPROACH FOR PARAMETER ESTIMATION IN FUZZY LOGISTIC REGRESSION
Logistic regression analysis is used to model categorical dependent variable. It is usually used in social sciences and clinical research. Human thoughts and disease diagnosis in clinical research contain vagueness. This situation leads researchers to combine fuzzy set and statistical theories. Fuzzy logistic regression analysis is one of the outcomes of this combination and it is used in situa...
متن کاملRegression models for analyzing radiological visual grading studies – an empirical comparison
BACKGROUND For optimizing and evaluating image quality in medical imaging, one can use visual grading experiments, where observers rate some aspect of image quality on an ordinal scale. To analyze the grading data, several regression methods are available, and this study aimed at empirically comparing such techniques, in particular when including random effects in the models, which is appropria...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJDATS
دوره 1 شماره
صفحات -
تاریخ انتشار 2008